
RESEARCH PAPER

Incorporating metabolic activity, taxonomy and community structure to improve 
microbiome-based predictive models for host phenotype prediction
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ABSTRACT
We developed MicroKPNN, a prior-knowledge guided interpretable neural network for micro
biome-based human host phenotype prediction. The prior knowledge used in MicroKPNN includes 
the metabolic activities of different bacterial species, phylogenetic relationships, and bacterial 
community structure, all in a shallow neural network. Application of MicroKPNN to seven gut 
microbiome datasets (involving five different human diseases including inflammatory bowel 
disease, type 2 diabetes, liver cirrhosis, colorectal cancer, and obesity) shows that incorporation 
of the prior knowledge helped improve the microbiome-based host phenotype prediction. 
MicroKPNN outperformed fully connected neural network-based approaches in all seven cases, 
with the most improvement of accuracy in the prediction of type 2 diabetes. MicroKPNN out
performed a recently developed deep-learning based approach DeepMicro, which selects the best 
combination of autoencoder and machine learning approach to make predictions, in all of the 
seven cases. Importantly, we showed that MicroKPNN provides a way for interpretation of the 
predictive models. Using importance scores estimated for the hidden nodes, MicroKPNN could 
provide explanations for prior research findings by highlighting the roles of specific microbiome 
components in phenotype predictions. In addition, it may suggest potential future research 
directions for studying the impacts of microbiome on host health and diseases. MicroKPNN is 
publicly available at https://github.com/mgtools/MicroKPNN.
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Introduction

The human gut microbiome plays key roles in 
human health and diseases. Perturbations of the 
gut microbiota structure are associated with 
a variety of human diseases including cancer and 
inflammatory bowel disease. Using microbial mar
kers (genes, species, or pathways) that are differ
ential between healthy individuals and patients, 
predictive models with promising accuracy have 
been built for predicting host phenotypes based 
on microbiome data.1,2 For example, gut micro
biome composition was recently shown to be pre
dictive of patient response to statins (the most 
common type of prescription drug which can 
lower cholesterol levels and reduce the risks of 
stroke and heart attack) and showed that 
Bacteroides-enriched individuals have a higher 
risk of statin-induced metabolic disruption.3

Microbiome-based human host phenotype pre
diction has benefited from the recent advances in 

Machine Learning (ML) and Artificial Intelligence 
(AI) algorithms. SIAMCAT is a machine learning 
toolbox developed to address the issues related to 
ML algorithms in microbiome studies such as poor 
generalization.4 Goallec et al.2 showed that the 
prediction accuracy depended on the choice of 
ML algorithms and types of metagenomic data 
and presented a computational framework for 
inferring microbiome-derived features for host 
phenotype predictions. This paper5 demonstrated 
the benefit of building multi-disease models to 
achieve accurate microbiome-based predictive 
models for human phenotype prediction.

Deep learning methods including various auto
encoders were also exploited for learning the repre
sentation of quantitative microbiome profile in 
a lower dimensional latent space, which were then 
used for building predictive models for host disease 
prediction.6 DeepMicro6 took advantage of 
recently developed autoencoders, including 
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shallow autoencoder (SAE), deep autoencoder 
(DAE), variational autoencoder (VAE), and con
volutional autoencoder (CAE), to achieve a low- 
dimensional representation from high- 
dimensional microbiome profile. Various machine 
learning classification algorithms (SVM, random 
forest, and MLP) were then applied on the learned 
representation for prediction. DeepMicro was 
shown to perform well as tested on six different 
disease datasets. However, the results showed that 
the performance of the various autoencoders 
varied.

Considering that microbial species are phylo
genetically related, there are a few attempts that 
tried to incorporate the phylogenetic relationship 
in the deep learning models for microbiome-based 
prediction. Ph-CNN7 and PopPhy-CNN8 are two 
of such approaches that share similar core ideas to 
represent species or OTU abundance profiles in 2D 
matrices such that the phylogenetic relationship 
among the species/OTUs are retained to some 
extent in the 2D matrices. These two approaches 
differ in how they achieve this goal. Ph-CNN uses 
the patristic distance between species/OTUs (com
puted from the tree) together with a sparsified ver
sion of multidimensional scaling to embed the 
phylogenetic tree in a Euclidean space. PopPhy- 
CNN prepares the 2D matrix representing the phy
logenetic tree populated with the relative abun
dance of microbial taxa in a metagenomic sample, 
such that, for a given row, the children of the nodes 
from that row are selected and their abundances 
are placed in the subsequent row in the order that 
their parents appear, starting with the left-most 
column. EPCNN9 is a more recent effort that uses 
an ensemble strategy utilizing different microbial 
features and taxonomic representation for micro
biome-based prediction, aiming to reduce overfit
ting. EPCNN transforms input abundance profiles 
of known and unknown microbial organisms into 
matrices according to different taxonomic repre
sentations, which are then converted into grayscale 
images, and fed into a network containing multiple 
2D convolutional and max pooling layers followed 
by fully connected layers.

Despite the success of applying deep-learning 
approaches to build microbiome-based predictors, 
the downside of these algorithms is the lack of 
interpretability due to their black-box nature. To 

overcome this issue, we designed a neural network 
architecture (MicroKPNN) that incorporates var
ious microbial relationships (metabolic, phyloge
netic, and community) in the model to improve 
the performance of microbiome-based prediction 
and interpretability of the models. Using this prior- 
knowledge guided neural network, we can examine 
which microbial relationship plays important roles 
in the prediction of host health status.

Our MicroKPNN is inspired by the KPNN 
approach,10 a deep learning approach for interpre
table deep learning and biological discovery and 
designed to predict human cell state from single- 
cell RNA-seq data in deep neural networks that are 
constructed based on biological knowledge. In 
KPNN, each node corresponds to a human protein 
or a gene, and each edge corresponds to 
a regulatory relationship that has been documented 
in biological databases. A notable difference 
between MicroKPNN and KPNN is that 
MicroKPNN uses a shallow neural network, with 
only one hidden layer, allowing a more straightfor
ward interpretation of predictions and examina
tion of the importance of prior knowledge and 
microbial relationship for prediction.

Gut microbes interact among themselves and 
with hosts. Various metabolic activities in the gut 
attribute to the interactions. The gut microbiota 
makes an important contribution to human meta
bolism by contributing enzymes that are not 
encoded by the human genome, for example, the 
breakdown of polysaccharides and polyphenols, 
and the synthesis of vitamins.11 Gut microbes can 
also break down host-derived substrates such as 
mucins. Among microbial community members, 
competitive relationships may be formed if 
microbes compete for the same resources, and 
they may also form cooperation relationships via 
metabolic cross-feeding in a shared 
environment.12,13 Comparison of predicted meta
bolic-interactions and species co-occurrence pat
terns suggested that habitat-filtering shapes the 
gut microbiome.12 Using literature mining, Sung 
et al.14 curated an interspecies network of the 
human gut microbiota (called NJS16) comprising 
hundreds of microbial species and three human cell 
types metabolically interacting through >4,400 
small-molecule transport (import or export) and 
macromolecule degradation events. Metabolic 
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activities have been used for providing explana
tions for observed differential species/genes, for 
example; however, they have not been explicitly 
used in predictive models.

Microbial organisms form communities. 
Metagenomic co-occurrence has been widely 
applied in metagenomic studies to construct 
microbiome networks and better understand 
microbiome community structures.15–17 We have 
recently inferred networks of microbial networks 
using metagenomic co-occurrence approach, tak
ing advantage of the availability of many gut meta
genomic sequencing datasets derived from healthy 
and diseased individuals, and recent methodology 
advances in network inference that can deal with 
sparse compositional data.18 From the networks, 
communities of microbes were identified. In this 
paper, we ask if such community information can 
be utilized to improve microbiome-based host phe
notype prediction.

We developed MicroKPNN, to incorporate 
metabolic activities and community information 
of gut microbes, in addition to their phylogenetic 
relationship, in constrained neural networks for 
microbiome-based prediction of host phenotype. 
We tested MicroKPNN on seven microbiome data
sets derived from cohorts of individuals with dif
ferent phenotypes and compared its performance 
with other approaches. We showed that it achieved 
comparable performance across all datasets with 
the state of the art phenotype predictors including 
deep learning approaches DeepMicro and EPCNN 
which involve much more complex network archi
tectures. Remarkably, MicroKPNN achieved even 
better accuracy than the existing approaches for 
diseases including liver cirrhosis, inflammatory 
bowel disease (IBD), and obesity. We showed that 
due to the shallow nature of our models, and the 
fact that hidden nodes carry biological meanings, 

MicroKPNN provides interpretability that was 
missed by the existing deep learning approaches.

Results

MicroKPNN is based on a neural network, in which 
a hidden layer contains different groups of nodes, 
representing metabolites, taxa, communities, and 
fully connected hidden nodes (see Methods). It 
was applied to seven datasets associated with var
ious diseases including Inflammatory Bowel Disease 
(IBD), Type 2 Diabetes (T2D), liver cirrhosis, color
ectal cancer, and obesity (see Table 1 and Methods). 
Below, we first show the results concerning the 
optimization of the Neural Network (NN) structure 
for the different diseases. We further compared 
MicroKPNN’s performance with existing 
approaches. Finally, we used case studies to demon
strate the interpretability of MicroKPNN.

Optimization of the neural network structure for the 
different diseases

We used different combinations of taxonomic 
ranks and the number of hidden nodes to see 
which setting resulted in the most accurate predic
tions. The area under the receiver operating char
acteristics curve (AUC) was used for performance 
evaluation. Table 2 summarizes the best perfor
mance of the MicroKPNN on the seven datasets 
and the corresponding configuration of the NN 
architecture. For example, the best NN predictor 
trained on EW-T2D contains 309 total nodes in the 
hidden layer, including 34 nodes representing dif
ferent orders of the bacterial species, and 10 fully 
connected hidden nodes. Figure 1 shows the 
impacts of the different parameters on the perfor
mance of the prediction of T2D (EW-T2D). 
MicroKPNN gave an almost perfect prediction for 

Table 1. Summary of human gut microbiome datasets used for disease state prediction.

Disease Dataset abv. [ref] No. of samples Healthy Patients
Dim. of in 
put profile

Inflammatory Bowel 
Disease

IBD19 110 85 25 443

Type 2 Diabetes EW-T2D20 96 43 53 381
Type 2 Diabetes C-T2D21 344 174 170 572
Liver Cirrhosis Cirrhosis22 232 114 118 542
Colorectal Cancer Colorectal23 121 73 48 503
Obesity Obesity24 253 89 164 465
Obesity Obesity-multi18 648 324 324 6463
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cirrhosis as shown in Table 2, suggesting the sig
nificant differences in the bacterial composition of 
the cirrhosis patients compared to healthy controls.

Table 2 also shows that different taxonomic 
ranks have different impacts on the performance 
of the predictors, depending on the diseases. For 
example, using taxonomic information at the order 

level gave the best performance for T2D prediction 
(EW-T2D), whereas for obesity, using genus in the 
hidden layer gave the best prediction comparing to 
other taxonomic ranks. Although there is no single 
taxonomic rank that performed the best across all 
different diseases, genus in general, gave a relatively 
good performance. Table 3 shows the performance 

Table 2. Summary of best performing neural network architecture for each dataset and their average AUC.
No. of nodes in different groups in the hidden layer

Dataset All Taxon (rank) Metabolite Community
Fully 

connected Avg. AUC

IBD 519 176 (genus) 234 29 80 0.954
EW-T2D 309 34 (order) 234 31 10 0.858
C-T2D 365 27 (class) 240 38 60 0.755
Cirrhosis 354 40 (order) 239 35 40 0.969
Colorectal 403 65 (family) 234 34 70 0.914
Obesity 479 184 (genus) 233 32 30 0.728
Obesity-multi 822 190 (order) 276 336 20 0.891

Figure 1. Impacts of the hyperparameters on the MicroKPNN performance for the EW-T2D dataset. (a) Comparison of the performance 
of the models built using different numbers of fully-connected hidden nodes (with the taxonomic rank set to “order” for this 
comparison). In this plot, each bar represents the performance of a model built using a certain number of fully connected hidden 
nodes (the numbers are shown below the bar). (b) comparison of the performance of models built using different taxonomic ranks 
(the number of fully connected hidden nodes was set to 10 for this comparison). The taxonomic ranks are shown below the bars in the 
plot. The standard deviation error bars were computed using results from five different runs.

Table 3. Comparison of MicroKPNN with different methods including NNs that are fully connected (fc-NN) in averaged AUC and 
standard deviation (in parenthesis).

Dataset MicroKPNN MicroKPNN-g100a fc-NN fc-NN(Mi-croKPNN) DeepMicrob EPCNNc

IBD 0.954 (0.037) 0.885 (0.085) 0.865 (0.031) 0.678 (0.089) 0.867 (0.059) NAd

EW-T2D 0.858 (0.067) 0.782 (0.032) 0.595 (0.065) 0.580 (0.062) 0.779 (0.072) 0.789 (0.056)
C-T2D 0.755 (0.032) 0.735 (0.058) 0.675 (0.033) 0.723 (0.019) 0.725 (0.060) 0.813 (0.024)
Cirrhosis 0.969 (0.009) 0.908 (0.051) 0.823 (0.022) 0.947 (0.021) 0.863 (0.027) 0.953 (0.007)
Colorectal 0.914 (0.046) 0.837 (0.042) 0.624 (0.038) 0.764 (0.053) 0.639 (0.055) 0.906 (0.013)
Obesity 0.728 (0.048) 0.650 (0.046) 0.539 (0.023) 0.608 (0.022) 0.631 (0.086) NA
Obesity-multi 0.891 (0.083) 0.833 (0.091) 0.820 (0.014) 0.826 (0.045) 0.763 (0.042) NA

The best performance for each dataset is highlighted in bold. a: MicroKPNN-g100, MicroKPNN with the taxonomic rank set to genus and the number of fully 
connected nodes set to 100. b: based on the results we derived by running DeepMicro on the same inputs of species abundance for all included approaches. 
Using the same practice as in,6: combinations of different autoencoders and ML approaches were tested and the best performance was reported here. c: the 
AUCs for EPCNN were taken from.9: Note the reported AUCs by EPCNN were based on predictors also trained using species abundances information, but the 
difference is that it used both known and unknown species, and the quantification approach was different. d: we attempted to run EPCNN on the three 
datasets IBD, Obesity and Obesity-multi but were unable to get results because the program resulted in an error.
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of MicroKPNN that uses genus together with 100 
fully connected hidden nodes (referred as 
MicroKPNN-g100 in the table) on the various 
datasets.

We further tested the impact of the different 
groups of hidden nodes on the performance of 
MicroKPNN by dropping one group, so using only 
the other three groups of nodes to build the models. 
We observed performance degradation across data
sets. For example, for colorectal cancer prediction, 
MicroKPNN’s performance dropped from AUC of 
0.914 to 0.694 (without taxonomic nodes), 0.731 
(without community nodes), and 0.688 (without 
metabolite nodes), and 0.761 (without fully con
nected hidden nodes), respectively. Supplementary 
Table S1 shows the details of the results.

Finally, Supplementary Table S2 shows the 
impacts of the other hyperparameters including 
the learning rate, dropout rate, and the lambda 
parameter (for L2 regularization) on the 
MicroKPNN’s performance. Overall, the compar
ison showed that the fine tuning of these para
meters helped improve the prediction accuracy; 
however, their impacts (as measured in AUC) 
were moderate: there was no difference or the 
difference was very small on these datasets: IBD, 
C-T2D, Cirrhosis and Obesity-multi, whereas the 
impact was moderate on EW-T2D, Colorectal and 
Obesity datasets.

Comparison of MicroKPNN with fully connected NN 
and existing deep learning predictors

Table 3 shows the comparison of MicroKPNN with 
the fully connected NN (without the guide of prior 
knowledge) and two existing state-of-the-art deep 
learning approaches for microbiome-based predic
tion (DeepMicro and EPCNN) in AUC. Table 4 
shows the comparison between MicroKPNN and 

DeepMicro in other metrics (MCC and AUC-PR), 
and Supplementary Table S3 shows the perfor
mance of conventional ML methods (SVM, RF 
and Elastic Net without using any autoencoders). 
For comparison, we also showed the model com
plexity in Supplementary Table S4. From these 
results, we observed that MicroKPNN achieved 
drastic performance improvements comparing to 
NN without constraining the network connection 
according to the prior knowledges (i.e., fully con
nected NN with the same number of nodes in the 
hidden layer as the corresponding MicroKPNN) on 
four out of the seven datasets: IBD, EW-T2D, 
Colorectal, and Obesity (the improvement on the 
T2D, Cirrhosis, and Obesity-multi dataset were 
modest). We note that the comparison of the two 
implementations of the fully connected NNs sug
gested that the fully connected MicroKPNN had 
better performance on five out of the seven cases; 
however, fully connected (keras) had better perfor
mance on IBD and EW-T2D.

MicroKPNN outperformed DeepMicro and 
EPCNN, two of the most recent deep learning ML 
approaches, on six out of the seven datasets (IBD, 
EW-T2D, Cirrhosis, Colorectal, Obesity and 
Obesity-multi), and achieved worse but still good 
AUC on C-T2D dataset. MicroKPNN outper
formed DeepMicro in all seven cases. We note 
DeepMicro tries different representation deep 
learning approaches and ML algorithms (RF, 
SVM and MLP) and reports the best AUCs. We 
also note that DeepMicro may either use species 
abundance or gene abundance as the input, and 
here we focus on comparison with DeepMicro 
using species abundance. EPCNN were based on 
predictors also trained using species abundances 
information, but there are differences: EPCNN 
uses both known and unknown species and the 
quantification was achieved using Micropro.25 

Table 4. Comparison of MicroKPNN with DeepMicro in additional metrics (MCC and AUC-PR).
MCC AUC-PR

Dataset MicroKPNN DeepMicro MicroKPNN DeepMicro

IBD 0.704 (0.158) 0.358 (0.192) 0.891 (0.104) 0.381 (0.097)
EW-T2D 0.518 (0.126) 0.387 (0.205) 0.879 (0.122) 0.686 (0.092)
C-T2D 0.420 (0.129) 0.317 (0.121) 0.824 (0.046) 0.602 (0.050)
Cirrhosis 0.854 (0.107) 0.641 (0.102) 0.973 (0.020) 0.786 (0.057)
Colorectal 0.417 (0.108) 0.209 (0.083) 0.850 (0.021) 0.642 (0.026)
Obesity 0.311 (0.096) 0.129 (0.073) 0.861 (0.076) 0.661 (0.009)
Obesity-multi 0.222 (0.203) 0.383 (0.047) 0.649 (0.096) 0.626 (0.016)
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Both DeepMicro and EPCNN were based on com
plex deep learning models: DeepMicro used the 
various autoencoders (SAE, DAE, VAE, and 
CAE), and EPCNN used multiple convolution 
layers. By contrast, MicroKPNN’s model is 
a much simpler neural network with only one 
hidden layer (see Supplementary Table S4 for 
a comparison of the model complexity), and in 
combination with the use of nodes with different 
biological meanings in the hidden layer (which 
provide good interpretability of the models see 
below), we believe MicroKPNN’s performance is 
very encouraging.

MicroKPNN’s accuracy for the Obesity dataset is 
the lowest among all datasets; however, its AUC 
(0.728) is significantly greater than the AUCs 
achieved by other approaches, including 
DeepMicro using species abundance profile as the 
input (AUC = 0.674) (DeepMicro achieved an 
AUC of 0.650 when it used the gene profile instead 
of species profile as the input for prediction). The 
results suggest that the microbiome difference is 
more subtle between healthy controls and patients 
with obesity comparing to other phenotypes.

The predictor trained using datasets from multi
ple studies (Obesity-multi) achieved much more 
accurate predictions of obesity comparing to the 
predictor built from a single study (Obesity). We 
attribute the improvement (AUC of 0.891 vs 0.728) 
to using more datasets from multiple studies, 
among others (e.g., using a different approach for 
taxonomic assignment and quantification). It also 
suggests that when datasets from different studies 
become available, it is beneficial to include all of 
them to improve the accuracy of the predictive 

models and perhaps make the predictive models 
more generalizable. For comparison, DeepMicro’s 
average AUC is 0.763 on this dataset.

Finally, comparing to DeepMicro and fully con
nected NNs, MicroKPNN tends to have smaller 
standard deviation of AUC (MicroKPNN had 
smaller standard deviation than DeepMicro in six 
out of seven cases; see Table 3 for details). 
Comparison of the model complexity 
(Supplementary Table S4) showed that 
MicroKPNN had significantly fewer parameters 
comparing to the fully connected neural networks, 
a result of the design of MicroKPNN. In addition, 
MicroKPNN had significantly fewer parameters 
than DeepMicro for most of the datasets (excep
tions are C-T2D and Obesity-multi). For example, 
the predictive models for IBD contained about 48k, 
258k and 230k parameters using MicroKPNN, 
DeepMicro, and fully connected NN, respectively.

Impacts of the sample size on MicroKPNN’s 
performance

We carried out downsampling experiments to 
show how sample sizes impacted the different pre
dictive models. Figure 2 shows the results of three 
methods (MicroKPNN, DeepMicro and the fully 
connected NN) when different numbers of samples 
were used (25%, 50%, 75% of the total samples for 
each dataset) for training and testing (using the 
same 60:20:20 splitting). For Cirrhosis prediction, 
the results showed that all three methods tend to 
give less accurate predictions with higher standard 
deviation when fewer samples were used; however, 
even when only 25% of the samples were used (232 

Figure 2. Impacts of the downsampling of samples on the different approaches for selected datasets. (a) Cirrhosis; (b) Colorectal 
cancer. We tried three different downsamplings, 75%, 50%, and 25%, and the results (AUCs and standard deviation distribution) are 
shown in the plots along with the performance when the entire dataset was used. We employed a stratified sampling approach to 
maintain the distribution balance between control and disease samples when downsampling.
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× 25% = 58 samples), all methods still achieved 
reasonable results with AUC > 0.8. By contrast, 
for colorectal cancer prediction, since the original 
dataset only had 121 samples, we observed that all 
methods had significant decrease in their perfor
mances when only 50% or 25% of the samples were 
used. Among the three methods, MicroKPNN had 
the least drop of its performance and still achieved 
reasonable results (average AUC = 0.791; standard 
deviation = 0.090) when 50% of the samples were 
used. When only 25% of the samples were used, the 
average AUC achieved by MicroKPNN was still 
reasonable (average AUC = 0.790); however, the 
standard deviation was increased significantly 
(0.186) comparing to the cases when more samples 
were used. Combining all the results, we consid
ered that MicroKPNN would give reasonable 
results (AUC and standard deviation) when 
roughly 60 samples were available.

Interpretability of MicroKPNN

We used the node weights as measures of the 
importance of the corresponding nodes (meta
bolic activity, taxonomic rank, community of 
species, and fully connected hidden nodes) and 
therefore to provide an explanation of the 
impacts of the inputs (the species) on the 

prediction. By examining the importance scores 
of the hidden nodes, we could compare the con
tribution of the different groups of nodes to the 
prediction. Figure 3 shows the boxplots of the 
importance scores of the most important nodes 
in each group for the different diseases. The 
comparison shows that the different groups of 
hidden nodes contributed differentially to the 
prediction of different diseases. The metabolite 
nodes had significant contributions to the pre
diction of some diseases, though to a different 
extent in different datasets. The notable example 
is cirrhosis prediction, in which the metabolite 
nodes contribute obviously more than the com
munity and taxon nodes to the performance (see 
Figure 3e). The importance scores of the indivi
dual nodes in the hidden layer also provide 
a way for suggesting biologically meaningful 
explanations to the microbiome-based predic
tors. Supplementary Figure S1 shows the impor
tance scores of the hidden nodes for 
microbiome-based host phenotype predictions 
for cirrhosis and obesity. Here, we focused on 
the obesity prediction (trained using the Obesity- 
multi dataset) as an example to demonstrate the 
application, considering that this dataset has the 
most number of samples for training. We tried 
two different ways to estimate the importance 

Figure 3. Contributions of the different groups of hidden nodes to the prediction as measured by importance scores. (a) IBD; (b) EW- 
T2D; (c) C-T2D; (d) obesity; (e) cirrhosis; (f) colorectal cancer. The boxes in different colors with whiskers show the distribution of the 
importance scores of the hidden nodes in different groups.
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scores of the hidden nodes, using the edge 
weights (our method) and the differential node 
weights as in KPNN,10 in which the node 
weights on the real datasets were normalized by 
the weights computed from the control inputs, 
simulated inputs assuming all nodes are equally 
important. Table 5 lists the top five taxa and 
metabolic activities that were predicted by 
MicroKPNN according to the edge weights. It 
shows that the two approaches (edge weights 
and different node weights) gave relatively con
sistent estimates of the importance of the nodes 
(i.e., they resulted in similar in-group ranks and 
overall ranks). The results also suggested that 
comparison of importance scores of the hidden 
nodes across different groups (e.g. a metabolic 
activity versus a taxon) need to be cautiously 
done due to their network connectivity differ
ences (notice the discrepancy of the in-group 
and overall ranks of the metabolic activities).

Three of the five top metabolic activities revealed 
by MicroKPNN (Table 5) were reported previously 
to be associated with obesity, including decreased 
nitrogen disposal (ammonia formation) in obese,26 

acetate’s modulation of body weight through differ
ent mechanisms,27 and altered lactate metabolism in 
obesity microbiota.28 It is well known that bacteria 
produce intermediate fermentation products includ
ing lactate, but these are normally detected at low 
levels in feces from healthy individuals due to exten
sive utilization of them by other bacteria.11,29 

Among the taxa that were predicted to be important 
for obesity prediction, Pseudomonadales order was 
the top one predicted by MicroKPNN, and 

significant increase in Pseudomonadales order was 
found in obese adult subjects.30

Discussion

MicroKPNN uses a relatively simple architecture 
compared to approaches including DeepMicro, 
EPCNN and fully connected NNs, but by lever
aging on prior knowledge of microbial species, it 
provides promising predictions of host phenotype 
based on microbiome composition as shown on all 
seven datasets. Comparison of the importance 
scores of different prior knowledge showed that 
the metabolic activities had the largest impact on 
the performance of predictions. The difference 
between the relative importance scores of the hid
den nodes with that of the fully connected nodes 
indicates the knowledge gap between the microbial 
species and their interaction with human hosts. For 
colorectal cancer, it was mostly the fully connected 
nodes that contributed to the prediction, indicating 
that although the predictor has a good AUC of 
0.914, the existing knowledge about the metabolic 
potential and bacterial interactions has limited 
value for interpreting the prediction of colorectal 
cancer based on the microbiome.

We note that in KPNN, the importance scores of 
the nodes (input nodes and hidden nodes) are 
normalized by (i.e., subtracted from) the impor
tance scores of the nodes when control inputs 
(simulated inputs assuming all nodes are equally 
important) were used in training, to adjust for the 
impacts of uneven connections between the nodes. 
In KPNN, the connections between the nodes 

Table 5. Ranks of taxonomic groups (orders) and metabolic activities that are potentially important for microbiome- 
based obesity prediction.

Description

Edge weighta Diff. node weightb

In-groupc Overalld In-group Overall

Taxonomic o_Pseudomonadales 1 1 1 1
o_Rhizobiales 2 2 2 2
o_Burkholderiales 3 3 10 10
o_Bacillales 4 4 3 3
o_Enterobacterales 5 5 6 6

Metabolic NH3 (ammonia) production 1 9 1 12
Acetate production 2 15 2 31
L-Lactate production 3 21 3 32
Sulfate sulfuric acid production 4 34 8 51
CO2 production 5 39 4 35

The ranks were computed using importance scores from 50 replicated calculations. a: the importance scores were estimated using the 
outgoing edge weights of associated hidden nodes. b: the importance scores were estimated using the differential node weights. c: ranks 
according to the importance scores for the hidden nodes in each group. d: ranks according to the importance scores over all hidden 
nodes of the four groups.
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represent the regulatory relationship among the 
proteins/genes, and some hidden nodes have dras
tically more incoming links than others. We com
pared such a subtraction approach with our 
importance scores computed from actual data for 
the interpretation and our results showed these two 
methods gave consistent importance scores. We 
consider that the network bias is less of a problem 
for our microbiome-based predictions compared 
to KPNN. In the MicroKPNN network, the con
nections between the input nodes and the hidden 
nodes with meanings (community, metabolites, 
and taxon) are all very sparse, with one link from 
each input node to a taxon node, one link from an 
input node to a community node (one node 
belongs to one community), and a small number 
of links from each input node to a metabolite node. 
Therefore, we believe the comparison of the impor
tance scores of the nodes especially within each 
group provides some useful information for inter
pretation, but cautious are still desired. On the 
other hand, the fully connected hidden nodes 
have more incoming links compared to other 
groups of hidden groups, so the importance scores 
(based on edge weights) of these hidden nodes as 
shown in Figure 3 could be overestimated.

Our results showed that there was no single 
combination of taxonomic rank and the number 
of fully connected hidden nodes that achieved best 
performance across all the datasets/diseases. On 
one hand, this potentially reduces the generaliza
tion capability of our predictive models. However, 
on other hand, it could reveal biological factors that 
are important for such predictions and they could 
be different for different diseases/cohorts.

The predictive models we built in this work are 
based on species abundance. It has been shown 
(including our own work) that using bacterial 
genes typically (not always) results in better pre
dictive models.2,31 Nevertheless, our knowledge- 
primed MicroKPNN’s was able to fill in some of 
the gaps between species-based and gene-based 
predictions. For example, among the seven data
sets that we tested, DeepMicro using gene markers 
as the inputs significantly outperformed 
DeepMicro based on species abundance for IBD 
prediction (AUC = 0.955 vs AUC = 0.873) and 
Cirrhosis (AUC = 0.940 vs AUC = 0.888).6 

MicroKPNN achieved comparable performance 

as DeepMicro using gene markers for IBD predic
tion, with AUC = 0.954 and even outperformed 
DeepMicro using gene markers for cirrhosis pre
diction (AUC = 0.969). A future direction of our 
work is to expand MicroKPNN so that it can take 
gene abundance as the input for microbiome- 
based prediction. We anticipate that more com
plex architecture will need to be adopted to incor
porate the prior knowledge, for example, multiple 
layers of hidden nodes to capture the hierarchical 
relationship of the genes.

Methods

Collection of the human gut metagenomic samples

We first used the same six datasets as those used for 
developing ML models including MetAML,32 

DeepMicro6 and EPCNN.9 Table 1 summarizes 
the six datasets and the diseases they represent. 
For fair comparison, we used the species profile 
abundance data downloaded from the 
DeepMicro6 GitHub repository at https://github. 
com/minoh0201/DeepMicro. The species abun
dance profiles for these six datasets were estimated 
by MetaPhlAn2.33 The species-level relative abun
dance profile consists of real values in [0,100] 
representing the percentages of the species in the 
total observed species for a sample (the numbers 
sum up to 100%) for each sample.

In addition, we used metagenomic datasets asso
ciated with obesity from 15 studies in an attempt to 
showcase the application of our tool (this collection is 
referred to as Obesity-multi in Table 1). The meta
genome datasets were downloaded from NCBI SRA 
and were analyzed using the Kraken+Bracken 
approach34 to derive taxonomic assignments and 
quantification. See more details of the datasets and 
data processing in.18 The list of datasets and their 
abundance profiles are available in the MicroKPNN 
github repository (see Implementation below).

MicroKPNN adopted the normalization of the 
abundance profiles that is used by KPNN, i.e., the 
abundances of the species were log transformed and 
then normalized for abundances to a maximum value 
of one and a minimum value of zero. Log normal
ization can be particularly useful when dealing with 
skewed or highly variable microbiome data.35 This 
approach helps to mitigate the impact of extreme 
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values and achieve a more balanced distribution of 
feature values. Our results showed that such 
a normalization resulted in good performance, and 
Supplementary Table S4 shows a comparison of the 
performance of MicroKPNN when the original rela
tive abundance was used and when a different nor
malization method was used.

Network structure

The main idea of MicroKPNN is to use prior knowl
edge to constrain the links between the nodes in the 
neural network, similar to the knowledge-primed 
neural networks (KPNN) method.10 Different from 
KPNN, MicroKPNN is a neural network that is 
constructed according to the prior knowledge of 
the bacterial species to improve host phenotype pre
diction using microbiome data. In MicroKPNN, 
hidden nodes have biological meanings, such as 
taxa, and every edge has a relation interpretation. 
This network offers insights into not only the impor
tance of individual microbial species and the conse
quent impact of the microbiota on the host but also 
the importance of taxonomic and metabolic varia
tions relevant to host phenotypes.

Specifically, MicroKPNN uses a neural network 
that has three layers (see Figure 4): the input layer, 
one hidden layer, and the output layer. Our results 

(see Results) show that such a shallow network 
does not sacrifice good performance compared to 
the deep learning approaches that have been devel
oped for microbiome-based prediction. The input 
layer is species abundance derived from human gut 
microbiome samples. The hidden layer includes 
four different groups of nodes (shown in different 
colors in Figure 4):

● Metabolites. This part of the network archi
tecture encompasses the relationships among 
gut microbial species and chemical com
pounds. Since microbial species have differ
ent metabolic capabilities with some being 
the producers of certain metabolites and 
others being the consumers of certain meta
bolites, each metabolite may be represented 
as two nodes in the hidden layer. One node 
for the metabolite has edges coming from the 
producer species in the input layer, whereas 
the other node has edges coming from the 
consumer species. For example, there are two 
nodes of L-lactate in the hidden layer 
(L-lactate consumption and L-lactate pro
duction), and there are edges connecting 
the producers (such as Bacteroides ovatus) 
with L-lactate production, and there are 
edges connecting the consumers (such as 

production  

consumption  

macromolecule  
degradation 

is a  

metabolites 

taxon 

is in community 

fully-connected 

S1 

S2 

S3 

S4 

S5 

S6 

M1 

M2 

T1 

T. 2

C1 
C. 2

H. 1 

Figure 4. The neural network structure used in MicroKPNN. It is composed of three layers (shown on the left). In the input layer, each 
node is a species, and the hidden layer includes nodes of four different groups: metabolites (red), taxa (blue), communities (green), 
and fully connected hidden nodes (gray). The links between the input nodes and the nodes in the hidden layer represent different 
biological meanings (shown on the right).
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Acetobacter pasteurianus) with L-lactate con
sumption. In addition, many bacterial spe
cies can degrade macromolecules including 
mucin (mucus glycoprotein) and cellulose, 
and edges will be added to connect the bac
terial species and the corresponding macro
molecules in the hidden layer. For example, 
many microbes including Bacteroides fragilis 
can degrade mucin and utilize it as a nutrient 
source for growth36,37 and therefore edges 
will be created connecting the mucin- 
degraders and mucin.

● Taxa. MicroKPNN uses a much simpler 
approach for encoding the phylogenetic rela
tionship as compared to the previous deep- 
learning approaches that use phylogenetic 
information (such as Ph-CNN). The NCBI 
hierarchical taxonomy38 is used to encode the 
taxonomic relationship. For example, if 
Bacteroides (a genus) is a node in the hidden 
layer, all the species in the input layer that 
belong to this genus will have an edge to this 
hidden node. MicroKPNN will try different 
taxonomic ranks including genus, order, 
class, and phylum (a hyperparameter in the 
model), and the rank that results in the best 
performance will be selected.

● Communities. Each node represents 
a community, and all species that are part of 
the community have an edge connecting to the 
node. The communities were computationally 
inferred using the Leiden algorithm39 from 
a species co-occurrence network.18

● Fully connected hidden nodes. Unlike the 
nodes in the above three groups that have 
corresponding biological meanings, these 
fully connected (unknown) nodes are added 
to alleviate the potential problem of losing 
information due to incomplete prior knowl
edge. This part of the network is fully con
nected, i.e., there is a link between every 
input node and every hidden node in this 
group. The number of fully connected hidden 
nodes is another hyperparameter in our 
model.

Given an input (and the taxonomic rank and the 
number of fully connected hidden nodes), 

MicroKPNN will dynamically create the corre
sponding network according to the species compo
sition found in the input. For example, a particular 
metabolite will be included as a hidden node, if at 
least one of the species included in the input can 
produce or consume the metabolite, and corre
sponding edges will be added between the species 
and the hidden node; similarly, a particular com
munity will be included in the hidden layer, if at 
least one of its component member is found in the 
input.

Implementation

We adapted KPNN for the training and application 
of the neural network for microbiome-based host 
phenotype prediction. KPNN workflow was imple
mented in python (3.7.13), using TensorFlow for 
NN training. Here are the settings for training in 
KPNN: edge weights randomly initialized, 
a sigmoid activation function for all hidden and 
output nodes, and a weighted cross-entropy with 
L2 regularization as the loss function. We added 
Python scripts that can be used to prepare the net
work constraints to KPNN for microbiome appli
cations. The network constraints are encoded using 
a list of edges between the species in the input layer 
and the nodes in the hidden layer: metabolic edges 
are created according to the NJS16 metabolic 
network,14 community edges are inferred based 
on the network file (in the standard gml format) 
of microbial communities,18 and the taxonomic 
edges are created according to the NCBI taxonomy. 
For clarity, we called our adopted version of KPNN 
for microbiome-based prediction as MicroKPNN, 
which is available as a GitHub repository at https:// 
github.com/mgtools/MicroKPNN.

Fully connected neural networks without using prior 
knowledge
To show the importance of including the prior 
knowledge as the constraints for prediction in 
MicroKPNN, we also implemented fully connected 
neural networks (fc-NNs) without using the prior 
knowledge for comparison. We used two imple
mentations of fully connected NNs. The first one 
is fc-NN (keras), our implementation of NN using 
the Keras library.40 The second one is fc-NN 
(MicroKPNN), MicroKPNN including only the 
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fully connected nodes in the hidden layer. We note 
the difference between the two implementations is 
that the latter has extra processes including early 
stopping and dropout that are inherited from 
KPNN. For fair comparison, in fully connected 
neural networks, the number of hidden nodes is 
set to be the same as the total number of hidden 
nodes (including the hidden nodes with biological 
meanings and the fully connected hidden nodes) in 
the best performing setting of MicroKPNN for 
each dataset, resulting in a consistent number of 
hidden nodes across MicroKPNN and fully con
nected NNs for each prediction.

Training, evaluation, and interpretation

For each dataset, we split data into training, valida
tion, and test sets in the ratio of 6:2:2 with a given 
random partition seed, keeping the ratio between 
classes in both training and test set to be the same 
as that of the given dataset. This procedure was 
repeated five times by changing the random parti
tion seed at the beginning of the training and test
ing procedure for model selection and evaluation 
(accuracy and standard deviation). Note that the 
test set was withheld from training the model to 
avoid overestimation of the performance. There are 
two hyperparameters that are unique to 
MicroKPNN, the taxonomic rank and the number 
of fully connected hidden nodes (the number of 
metabolite nodes and the number of community 
nodes are fixed). We tested the following taxo
nomic ranks: kingdom, phylum, class, order, 
family, or genus. For fully connected hidden 
nodes, we tried 10, 20, 30, 40, 50, 60, 70, 80, 90 
and 100 for each dataset. In total, we considered 60 
different combinations of taxonomic rank and 
number of hidden nodes. The combination that 
resulted in the best performance (on the test set) 
will be selected, similarly to DeepMicro (which 
considered different combinations of autocoders 
and ML approaches). We note that MicroKPNN 
also inherited from KPNN other hyperparameters 
including learning rate, L2 regularization, and the 
two hyperparameter (minimum percent improve
ment on the validation set error required to save 
a model, and number of allowed failed learning 
epochs) for early stopping. These hyperparameters 
were chosen based on the performance on the 

training and validation sets. Here are the possible 
values for MicroKPNN to choose from: the learn
ing rate (0.0001, 0.001, 0.01, 0.1, 0.5, 1), the lambda 
parameter for the L2 regularization (0.001, 0.01, 
0.1, 0.2, 1), and the dropout rate of the hidden 
nodes (0, 0.1, 0.2, 0.3, 0.4).

The area under the receiver operating character
istics curve (AUC) was used for performance eva
luation. Additional metrics include AUC-PR (the 
area under the precision-recall curve) and MCC 
(Matthews Correlation Coefficient). MCC is high 
only if the prediction obtained good results in all of 
the four confusion matrix categories (true posi
tives, false negatives, true negatives, and false 
positives).

The predictive models once trained were ana
lyzed to calculate node weights as a reflection of 
node importance for the predictions. KPNN 
applied small perturbations to each hidden node 
separately and measured changes in network out
put, thus quantifying the importance of each node 
to the output of the network. Because the sign of 
the resulting node weights is largely arbitrary, 
KPNN uses the absolute value of the node weights 
as a measure of the importance of each node in the 
trained KPNNs. Similarly in MicroKPNN, we used 
the absolute value of the outgoing edge weights to 
quantify the importance of associated nodes in the 
hidden layer. We used the average of the impor
tance scores from 50 repeated runs to quantify the 
importance of the nodes. In addition, we used the 
differential node weights as in KPNN10 to quantify 
the importance scores, and compared the results of 
using these two different important scores.
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